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1 Introduction
Existence of Police Misconduct as a Public Problem

1.1 Existence and Cost of Bad Police Behavior

Police misconduct remains a significant and well-documented challenge for
law enforcement agencies in the United States and internationally. Empiri-
cal studies consistently demonstrate patterns of abuse, ranging from exces-
sive use of force to psychological violence and systemic bias. For example,
Schwartz (2020) analyzes litigation costs associated with police misconduct
and argues that the financial burden placed on municipalities undermines
incentives for institutional accountability. Similarly, Hickman, Piquero, and
Garner (2008) present national estimates of non-lethal force by police, doc-
umenting its prevalence and raising concerns about underreporting.

The fiscal impact is equally staggering. In 2024 alone, New York City
paid $206 million in legal settlements related to NYPD misconductits highest
yearly payout since 2018 (Legal Aid Society, 2025). Over six years, NYC dis-
bursed more than $750 million addressing officer misconduct. These trends
are not confined to the U.S.; the Metropolitan Police in London saw legal
costs rise to £15 million in 2024, reflecting growing public scrutiny (Finan-
cial Times, 2025).

Beyond financial burdens, police misconduct imposes intangible societal
costs. Research into racial bias and the "adultification" of Black children in
England and Wales found systemic mischaracterizations that result in dis-
proportionate and unjust police interactions (Independent Office for Police
Conduct, 2024). In the U.S., a Department of Justice (2024) investigation
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into the Memphis Police Department revealed systemic constitutional vio-
lations, including discriminatory practices and excessive force.

These examples highlight not only the existence but also the structural
nature of police misconduct. Kane and White (2009), in a seminal study
of NYPD officers, found that career-ending misconduct is rarely isolatedit
tends to be predictable and linked to earlier indicators.

1.2 Problem of Predicting Police Misconduct

Scholars have employed a wide array of methods to understand the ori-
gins, patterns, and consequences of police misconduct. Early research em-
phasized descriptive surveys. For instance, Hickman et al. (2008) devel-
oped a national-level understanding of excessive use of force through officer
and civilian surveys. Walker (2005) further contextualized these behaviors
within systems of accountability, describing how oversight mechanisms shape
officer conduct.

Sociological and organizational models added a structural perspective.
Smith (2004) examined how organizational policies and department size cor-
relate with use-of-force incidents. Psychological and behavioral approaches
also emerged. For example, recent studies have compared officers with histo-
ries of serious misconduct to matched comparators to identify distinguishing
traits (PubMed, 2022). This line of work suggests that some misconduct is
predictable through psychometric assessment.

The role of peer networks has also been emphasized. Investigating the
effect of social exposure, network-based studies show that officers are more
likely to engage in misconduct if they work closely with colleagues who
have already been accused of similar behavior (Schwartz, 2020; Rozema &
Schanzenbach, 2019).

With advances in computational modeling, scholars now use predictive
analytics and machine learning to forecast misconduct. Stoddard, Fitz-
patrick, and Ludwig (2024) show that prior complaints and deployment
patterns can be used to identify at-risk officers. Similarly, Ensign et al.
(2017) examine how feedback loops in predictive policing systems may ex-
acerbate racial disparities and lead to increased targeting of marginalized
communities.

Collectively, these approaches-from institutional theory to predictive mod-
elingoffer a layered understanding of the causes and costs of misconduct and
provide a foundation for reform and early intervention strategies.
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1.2.1 Traditional Predictive Models

Statistical modeling techniques have been foundational in the fields of statis-
tics, economics, and sociology, providing essential tools for analyzing rela-
tionships between variables and predicting outcomes. In the realm of crimi-
nal justice, these models have been employed to understand crime patterns,
evaluate policy impacts, and forecast criminal behavior. However, their ap-
plication is accompanied by limitations, particularly concerning metrics like
R2 and Mean Squared Error (MSE), especially when dealing with out-of-
sample data and large, unstructured datasets such as those derived from
body-worn cameras or textual records.

1. Linear Regression
Linear regression estimates the relationship between a dependent vari-
able and one or more independent variables by fitting a linear equation
to observed data. In criminal justice, it’s employed to assess factors in-
fluencing crime rates or the effectiveness of interventions. For instance,
studies have used linear regression to explore socioeconomic determi-
nants of crime (Weisburd & Britt, 2009). However, the reliance on R2

as a measure of fit can be misleading. A high R2 indicates that the
model explains a large proportion of variance in the dependent vari-
able, but it doesn’t confirm the model’s predictive accuracy on new
data. Moreover, linear regression assumes a linear relationship and is
sensitive to outliers, which can distort results. When applied to large,
unstructured datasets, such as video or text from body-worn cameras,
linear regression becomes impractical due to its inability to capture
complex, nonlinear patterns inherent in such data.

2. Logistic Regression
Logistic regression is utilized when the dependent variable is binary,
modeling the probability of a particular outcome. In criminal justice,
it’s often used to predict recidivism or the likelihood of reoffending
(Berk, 2012). While logistic regression doesn’t produce an R2 value
analogous to linear regression, pseudo-R2 measures exist but are in-
terpreted differently. The model’s performance is typically evaluated
using metrics like accuracy, sensitivity, and specificity. Logistic regres-
sion assumes a linear relationship between independent variables and
the log odds of the dependent variable, which may not hold in com-
plex real-world scenarios. Additionally, it struggles with large-scale
unstructured data, as it cannot effectively process the high dimension-
ality and variability present in such datasets.
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3. Time Series Analysis
Time series analysis examines data points collected or recorded at
specific time intervals to identify trends, cycles, and seasonal varia-
tions. In criminal justice, it’s applied to forecast crime rates and al-
locate resources accordingly (Corman et al., 1987). Metrics like Mean
Squared Error (MSE) are used to assess model accuracy, but they are
scale-dependent and can be influenced by outliers. Time series mod-
els assume that past patterns will continue, which may not account
for sudden changes or anomalies. Furthermore, these models are less
effective with large, unstructured datasets, as they require structured,
time-indexed data and cannot easily incorporate the complexity of in-
formation from sources like body-worn cameras or textual data.

4. Structural Equation Modeling (SEM)
SEM combines factor analysis and multiple regression to examine com-
plex relationships among variables, including latent constructs. In
criminal justice, SEM has been used to study theoretical constructs
like the relationship between social factors and criminal behavior (Gau,
2010). Fit indices such as the Root Mean Square Error of Approxi-
mation (RMSEA) and Comparative Fit Index (CFI) evaluate model
adequacy. However, SEM requires large sample sizes and assumes mul-
tivariate normality, which can be restrictive. Its application to large,
unstructured datasets is limited due to challenges in specifying models
that can accommodate the complexity and variability of such data.

5. Hierarchical Linear Modeling (HLM)
HLM, or multilevel modeling, analyzes data with nested structures,
such as individuals within neighborhoods. It’s particularly useful in
criminal justice for assessing contextual effects on individual behav-
iors (Raudenbush & Bryk, 2002). While HLM provides insights into
variance at multiple levels, interpreting R2 in this context is complex,
as it doesn’t partition variance neatly across levels. The model as-
sumes normality and homoscedasticity at each level, which may not
be realistic. Additionally, HLM is not well-suited for large, unstruc-
tured datasets, as it relies on clearly defined hierarchical structures and
cannot efficiently process the high-dimensional data typical of sensor
outputs or textual records.

6. Limitations in Handling Large, Unstructured Data
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Traditional statistical models like those discussed are designed for
structured data with clearly defined variables and relationships. They
struggle with large, unstructured datasets due to several reasons:

• Dimensionality: Unstructured data often have a vast number
of features, making traditional models computationally inefficient
and prone to overfitting.

• Nonlinearity: The relationships in unstructured data are of-
ten nonlinear and complex, which linear models cannot capture
effectively.

• Data Preprocessing: Transforming unstructured data (e.g.,
text, images) into a format suitable for traditional models requires
extensive preprocessing, which can lead to information loss.

As a result, alternative methods such as machine learning algorithms,
including deep learning, are more appropriate for analyzing unstruc-
tured data from sources like body-worn cameras or textual records.

1.3 Intuition for the inadequacy of traditional methods

Rather than thinking in the most abstract case first, let’s take a familiar
example linear regression. In simple linear regression we are trying to the
best linear relationship between two variables. We are minimizing:

L(β̂, x, y) = argmin
β

(y − β̂ · x)2. (1)

In many contexts the loss function above is also defined:

L(β̂, x, y) = ε̂ (2)

In the Equations 1 and 2, I am assumeing y is a 1× n scaled and mean
0 vector of our dependent values, β̂ is a scalar real valued constant. The
dependent value is also mean 0 which saves us from having to worry about
constants.

What is important here is that the relationship between the scaled or
regularized independent and dependent variables is linear of affine if we
did not rescale the variables. From a geometric point of view when we use
multi-variable regression we continue to specify a linear relationship but in
for dimension greater than 1, we are now specifing a hyper-plane in the
number of dimensions of our independent variable usueally, d.

L(β̂, x, y) = argmin
β

(y − β̂′x)′(y − β̂′x) (3)
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Notice that in Equation 3, I have expicitly used the notation from linear
algebra. Here y is a 1 × n vector of observations where n is the number of
observations while x is a n× d vector of observations where d is the number
of variables while again n is the number of observations.

We can extend estimation in this manner by looking at polynomial es-
timation. Here we can approximate a a conftinuous function by taking
polynmials of any number of variables. However Hastie (2016) and Bishop
(2006) document that these methods suffer from instability.

1.4 More recent approaches

Risk modeling has traditionally relied on conventional estimation meth-
odssuch as maximum likelihood estimation or linear regressionthat assume
a fixed underlying structure and static parameters. While these methods
have long provided a basis for decision-making, they can struggle to capture
the dynamic and often non-stationary nature of risk in complex systems. In
response, advanced methods in risk modeling have emerged that leverage
frameworks from reinforcement learning, decision theory, and adversarial
modeling to address these limitations.

1.5 Conventional Model Estimation

In fact, conventional model estimation typically involves fitting a pre-specified
parametric model to historical data. Such approaches, though computa-
tionally efficient and theoretically grounded in statistical inference (Hastie,
Tibshirani, & Friedman, 2009), often fall short in environments where risk
factors evolve over time. Their static nature can lead to suboptimal perfor-
mance when the system dynamics change, as these methods do not inher-
ently incorporate mechanisms for continuous adaptation or learning.

1.6 Markov Decision Processes and Reinforcement Learning

Advanced risk modeling increasingly adopts a framework based on Markov
Decision Processes and reinforcement learning. Markov Decision Processes
offer a formal structure for modeling sequential decision-making under un-
certainty, where the current state encapsulates all relevant past information.
Reinforcement learning builds on this by allowing an agent to learn optimal
policies through trial and error. As Sutton and Barto (2018) explain, “re-
inforcement learning enables agents to learn optimal policies through direct
interaction with the environment” (p. 42). This dynamic approach permits
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continuous adjustment of risk assessments as new data becomes availablea
significant advantage over conventional static models.

1.7 Policy Evaluation and Optimization

Within the reinforcement learning framework, policy evaluation and opti-
mization are central components. Policy evaluation involves estimating the
value functionthe expected cumulative rewardfrom a given state under a par-
ticular policy. Optimization then iteratively improves the policy based on
these evaluations. This cycle contrasts sharply with conventional methods
that typically require a one-shot estimation process. The iterative nature of
reinforcement learning allows for fine-tuning in real time, accommodating
the uncertainties inherent in risk environments. Such adaptability is crucial
for scenarios where risk profiles may change abruptly or evolve gradually
over time.

1.8 Actor-Critic Methods

Actor-critic methods represent a hybrid approach that combines the strengths
of both policy-based and value-based methods. The “actor” proposes ac-
tions based on a parameterized policy, while the “critic” evaluates these
actions using a value function. According to Konda and Tsitsiklis (2000),
actor-critic algorithms “combine the benefits of policy gradient methods and
value function approximation, leading to more stable and efficient learning”
(p. 93). This dual mechanism not only improves convergence properties but
also enhances the robustness of the model when faced with the uncertainties
typical in risk management scenarios.

1.9 Generative Adversarial Networks (GANs)

Originally introduced for tasks in image and text generation, Generative Ad-
versarial Networks (GANs) have been adapted to risk modeling to simulate
complex data distributions. In a GAN framework, two modelsa generator
and a discriminatorengage in a competitive process that refines the ability of
the generator to produce realistic data. Goodfellow et al. (2014) described
GANs as “a novel framework for estimating generative models via an adver-
sarial process” (p. 2672). In risk modeling, this adversarial process can be
used to explore a wide range of potential risk scenarios, providing insights
that are not readily available through traditional estimation methods.
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1.10 Summary of modern estimation methods

In contrast to conventional model estimationwhich often relies on static
assumptions and single-step fittingadvanced methods in risk modeling of-
fer a dynamic and adaptive approach. By leveraging frameworks such as
Markov Decision Processes, reinforcement learning, actor-critic methods,
and GANs, modern risk models can continuously learn from data, accom-
modate changing environments, and better capture complex risk dynamics.
These advanced techniques not only provide more robust estimates in real-
world applications but also open new avenues for exploring and mitigating
risk in uncertain and volatile domains.

2 Introduction to Markov Decision Making and
Reinforcement Learning

In reinforcement learning, decision-making under uncertainty is modeled
using a Markov Decision Process (MDP). An MDP is defined by the tuple:

(S,A, P,R, γ) (4)

where:

• S: set of all possible states. Example: S = {s1, s2, . . . , sN}

• A: set of all possible actions. Example: A = {a1, a2, . . . , aM}

• P (s′ | s, a): probability of transitioning to state s′ from state s after
taking action a:

P (s′ | s, a) = Pr(st+1 = s′ | st = s, at = a) (5)

• R(s, a): reward function that gives the immediate reward received
after taking action a in state s

• γ ∈ [0, 1]: discount factor that weights future rewards

3 Policy and Value Functions
A policy π maps states to a probability distribution over actions:

π(a | s) = Pr(at = a | st = s) (6)
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State-Value Function V π(s): expected cumulative discounted reward
when starting in state s and following policy π:

V π(s) = Eπ

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s

]
(7)

Action-Value Function Qπ(s, a): expected return starting from state
s, taking action a, and then following policy π:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
(8)

4 Bellman Equations
Bellman equation for V π(s):

V π(s) =
∑
a∈A

π(a | s)

[
R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V π(s′)

]
(9)

Bellman optimality equation for V ∗(s):

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V ∗(s′)

]
(10)

Bellman optimality equation for Q∗(s, a):

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′ | s, a)max
a′∈A

Q∗(s′, a′) (11)

5 Reinforcement Learning Objective
Reinforcement learning methods seek a policy π∗ that maximizes the ex-
pected return:

J(π) = Eπ

[ ∞∑
t=0

γtR(st, at)

]
(12)

This involves:

• Exploration: sampling unknown actions to improve knowledge
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• Exploitation: using current estimates to select high-value actions

• Policy Evaluation: estimating V π or Qπ

• Policy Improvement: updating π using the estimated values

6 Summary of set up of Sequention Markov Deci-
sionmaking

This outlines the formal structure and notation of an MDP and how re-
inforcement learning can be applied to find optimal policies by evaluating
and improving value functions iteratively. We have set this up as a stochas-
tic optimization problem, so we are primed to use stichastic calculus, and
algebraic manipulation to work towards a solution. However, there is also
another important element. The surface of possible actions and the surface
of expected rewards are manifolds.

7 Introduction
In reinforcement learning , agents interact with environments characterized
by high-dimensional state spaces, while the action and reward spaces are
often of much lower dimensionality. This disparity suggests that the agent’s
decision-making process operates on a lower-dimensional manifold within
the higher-dimensional state space. Information geometry provides a math-
ematical framework to understand and exploit this structure by modeling
the space of probability distributions as a Riemannian manifold, where the
Fisher information metric defines the geometry.

8 Information Geometry and the Fisher Informa-
tion Metric

Information geometry is an interdisciplinary field that applies differential
geometric methods to study probability theory and statistics. It conceptu-
alizes statistical models as geometric structures, providing valuable insights
into the relationships between different probability distributions.
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8.0.1 Manifolds in Information Geometry:

In this context, a manifold is a mathematical space that locally resembles
Euclidean space but may have a more complex global structure. Specifically,
a statistical manifold is a smooth manifold where each point represents a
distinct probability distribution. This framework allows for the application
of geometric concepts to analyze statistical models.

8.0.2 Metrics and Riemannian Metrics:

A metric on a manifold provides a way to measure distances between points,
enabling the quantification of differences between probability distributions.
When this metric varies smoothly across the manifold and defines an inner
product on the tangent space at each point, it is termed a Riemannian
metric. This structure facilitates the application of calculus on manifolds,
allowing for the measurement of angles, lengths, and volumes, and the defi-
nition of concepts like curvature.

8.0.3 Fisher Information Metric:

A pivotal Riemannian metric in information geometry is the Fisher infor-
mation metric. For a family of probability distributions parameterized by
θ = (θ1, θ2, . . . , θd), the Fisher information matrix gij(θ) is defined as:

gij(θ) = E
[
∂ log p(X;θ)

∂θi
∂ log p(X;θ)

∂θj

]
,

where p(X;θ) is the probability density function of the random variable
X parameterized by θ, and the expectation is taken with respect to p(X;θ).
This metric provides a measure of the sensitivity of the probability distribu-
tion to changes in the parameters, effectively capturing the local curvature
of the statistical manifold.

8.1 Characteristics of the Spaces into which the manifolds
are emebeded

Furtermore, information geometry extends the principles of differential ge-
ometry to the study of probability distributions, treating them as points on
a manifold. This geometric framework provides profound insights into the
structure of statistical models. Central to this framework are concepts such
as affine connections, duality, and dually flat spaces, which are instrumental
in understanding the geometric properties of statistical manifolds.
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8.2 Affine Connections and Duality

An affine connection on a differentiable manifold M is a tool that allows
for the differentiation of vector fields on the manifold. Formally, it is a
bilinear map ∇ : X(M)× X(M) → X(M) satisfying:

1. ∇fX+gY Z = f∇XZ + g∇Y Z

2. ∇X(fY ) = f∇XY + (Xf)Y

for all vector fields X,Y, Z ∈ X(M) and smooth functions f, g on M .
This structure enables the comparison of tangent vectors at different points,
facilitating the definition of parallel transport and covariant differentiation

In information geometry, two specific affine connections are of particular
interest:

1. e-Connection (Exponential Family): Associated with the natural
parameters of an exponential family of probability distributions, the e-
connection aligns with the geometry induced by the Fisher information
metric.

2. m-Connection (Mixture Family): Corresponding to the expec-
tation parameters in a mixture family, the m-connection reflects the
dualistic nature of statistical manifolds, capturing the geometry from
the perspective of mixture parameters.

These dual connections are fundamental in understanding the geometric
structure of statistical models, as they provide complementary perspectives
on the curvature and connection properties of the manifold.

8.3 Dually Flat Spaces

A dually flat space is a statistical manifold that is flat with respect to
both the e-connection and the m-connection. This dual flatness implies
the existence of dual affine coordinate systems and a potential function
whose Hessian defines the Riemannian metric. In such spaces, the e- and
m-connections are mutually dual relative to the Fisher information met-
ric, leading to elegant geometric properties and simplifications in statistical
inference

The significance of dually flat spaces lies in their ability to generalize
Euclidean space properties to the realm of information geometry. They fa-
cilitate the development of efficient algorithms for statistical estimation and
inference by leveraging the natural duality between the e- and m-connections
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8.3.1 Importance in Machine Learning:

In machine learning, understanding the geometric structure of parameter
spaces is crucial for developing efficient algorithms. The Fisher information
metric allows practitioners to account for the underlying geometry of statis-
tical models, leading to more natural and efficient optimization techniques.
For instance, natural gradient descent leverages this metric to navigate the
parameter space more effectively than standard gradient descent, resulting
in improved convergence properties.

8.3.2 Application to Complex Problems like Police Misconduct:

When addressing complex societal issues such as police misconduct, machine
learning models can be employed to analyze patterns and predict outcomes.
By representing the space of possible behaviors or incidents as a statistical
manifold equipped with the Fisher information metric, one can gain deeper
insights into the relationships between different variables and their influ-
ence on outcomes. This geometric perspective facilitates the development
of models that are more sensitive to the nuances of the data, potentially
leading to more accurate predictions and informed policy decisions.

In summary, the concepts of manifolds, metrics, and Riemannian metrics
are foundational in information geometry and play a significant role in the
study and solution of complex machine learning problems. They provide a
structured framework for understanding the geometry of statistical models,
leading to more effective analysis and interpretation of data.

9 Natural Gradient Descent in Reinforcement Learn-
ing

Traditional gradient descent methods update parameters in the direction of
the steepest descent in the parameter space, which may not be optimal on
a curved manifold. Natural gradient descent addresses this by taking into
account the manifold’s curvature, updating parameters in the direction of
the steepest descent in the space of probability distributions. The natural
gradient ∇̃J(θ) is given by:

∇̃J(θ) = G(θ)−1∇J(θ), (13)

where J(θ) is the objective function, ∇J(θ) is the standard gradient,
and G(θ) is the Fisher information matrix. This approach ensures that
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updates are made in a manner that respects the underlying geometry of the
parameter space, leading to more efficient and stable convergence in learning
algorithms.

In the context of reinforcement learning, natural gradient methods have
been applied to policy optimization, resulting in algorithms like the nat-
ural policy gradient. These methods leverage the geometric structure to
guide policy updates, improving convergence rates and stability in learning
processes.

10 Dimensionality Considerations in Action and
Reward Spaces

The recognition that the action and reward spaces often have much lower
dimensionality than the state space has significant implications for policy op-
timization. By focusing on the lower-dimensional manifold where decision-
making occurs, algorithms can be designed to operate more efficiently, reduc-
ing computational complexity without sacrificing performance. This insight
aligns with findings that, under certain conditions, the dimensionality of
the manifold of reachable states is at most the dimensionality of the action
space plus one.

11 Summary of connection to Informational Ge-
ometry

Incorporating information geometry into reinforcement learning provides a
principled approach to addressing the challenges posed by high-dimensional
state spaces. By leveraging the geometric structure of the space of probabil-
ity distributions, algorithms can achieve more efficient and stable learning,
particularly when the action and reward spaces are of much lower dimen-
sionality than the state space. Natural gradient methods exemplify this
approach, offering a geometrically informed alternative to traditional gradi-
ent descent techniques in the optimization of policies within reinforcement
learning frameworks.

12 Optimal Tranport
Another geometric framework relevant to reinforcement learning and prob-
abilistic modeling is optimal transport (OT). Originating from problems
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posed by Gaspard Monge (1781) and later reformulated by Leonid Kan-
torovich (1942), the OT framework provides a principled way to measure
the distance between probability distributions, accounting for the geometry
of the underlying space. This framework has found powerful applications in
modern machine learning, particularly through the Wasserstein distance,
which can be interpreted as a Riemannian metric on the space of probability
measures.

13 The Monge Problem
The Monge formulation of optimal transport seeks a transport map T :
X → Y that pushes a probability distribution µ onto another distribution
ν, minimizing the total cost of transport. Mathematically:

inf
T :T#µ=ν

∫
X
c(x, T (x)) dµ(x), (14)

where c : X × Y → R+ is a cost function (often c(x, y) = ‖x − y‖p),
and T#µ denotes the pushforward measure of µ by T . Monge’s problem is
nonlinear and may not always have a solution.

14 The Kantorovich Relaxation
Kantorovich introduced a relaxed version of Monge’s problem using trans-
port plans γ ∈ Π(µ, ν), where Π(µ, ν) denotes the set of all joint distribu-
tions with marginals µ and ν. The Kantorovich problem becomes:

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ(x, y). (15)

This relaxation turns the problem into a linear program over a convex
set, guaranteeing the existence of a solution under mild conditions.

15 Brenier and Alexandrov’s Contributions
In the theory of optimal transport, the foundational contributions of Bre-
nier, Alexandrov, and Rockafellar provide critical insights into the existence,
uniqueness, and structure of optimal transport maps, particularly when the
cost function is quadratic.

Let µ and ν be probability measures on Rd with finite second moments,
and assume that µ is absolutely continuous with respect to the Lebesgue
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measure. Consider the quadratic cost function c(x, y) = 1
2‖x−y‖2. Brenier’s

theorem asserts the existence of a unique optimal transport map T : Rd →
Rd that pushes forward µ to ν, and this map is characterized as the gradient
of a convex function φ : Rd → R:

T (x) = ∇φ(x).

This result connects optimal transport with convex analysis and PDEs,
making it amenable to efficient numerical computation. Similarly, Alexan-
drov developed deep geometric insights related to the curvature of convex
surfaces and measure-preserving maps, which underpin the geometric intu-
ition of OT.

Alexandrov’s theorem pertains to the regularity properties of convex
functions. It states that any convex function φ : Rd → R is twice differen-
tiable almost everywhere. In the context of optimal transport, this implies
that the convex potential φ from Brenier’s theorem is not only differentiable
but possesses a Hessian D2φ(x) at almost every point x ∈ Rd. This regu-
larity is crucial for understanding the geometric properties of the transport
map and ensures that the map T (x) = ∇φ(x) behaves well in a measure-
theoretic sense.

16 Convexity and Rockafellars Theorem
Rockafellar’s theorem (1970) provides a characterization of cyclically mono-
tone operators. It states that a set-valued operator T : Rd ⇒ Rd is the
subdifferential of a convex, lower semicontinuous, and proper function if
and only if it is maximally cyclically monotone. In the framework of opti-
mal transport, this theorem implies that if a transport map T is cyclically
monotone, there exists a convex function φ such that T = ∇φ. This re-
sult underpins the uniqueness and structure of optimal transport maps in
Monge’s problem when the cost function is convex, linking the concepts of
monotonicity in optimization to the geometry of transport maps.

This connects optimal transport directly to convex optimization, opening
the door for first-order and variational optimization methods in learning.

Collectively, these theorems form the theoretical backbone of optimal
transport theory, elucidating the deep interplay between convex analysis,
geometry, and the structure of optimal mappings.
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17 Wasserstein Distance and Riemannian Geom-
etry

The Wasserstein distance Wp(µ, ν), particularly the 2-Wasserstein dis-
tance W2, quantifies the cost of transporting mass between µ and ν over a
metric space:

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
X×Y

‖x− y‖2 dγ(x, y). (16)

In the space of probability measures P2(Rd), the 2-Wasserstein distance
defines a Riemannian metric, as shown in the works of Otto and others. This
endows the space of distributions with a geometry where gradient flows and
natural transport paths (geodesics) can be computed and used for modeling
and optimization.

18 Applications in Reinforcement Learning and
Machine Learning

In reinforcement learning, optimal transport provides tools for:

• Regularizing policy updates via Wasserstein penalties,

• Comparing distributions of trajectories or value functions,

• Enforcing smooth interpolations between policies.

Moreover, Wasserstein distances have been used in generative modeling
(e.g., Wasserstein GANs) and imitation learning, where geometry-aware loss
functions improve sample efficiency and stability.

19 Optimal Transport Computational Challenges
and Solutions

Optimal transport (OT) theory focuses on determining the most cost-effective
way to transform one probability distribution into another, minimizing a pre-
defined cost function. This problem is computationally intensive due to its
formulation as a linear programming task involving constraints that ensure
the preservation of mass during transportation. The complexity arises from
the need to solve for a transport plan that satisfies these constraints while
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minimizing the transportation cost, leading to significant computational de-
mands, especially as the size of the distributions increases.

The classical OT problem involves solving a linear program with a cost
matrix that grows quadratically with the number of support points in the
distributions. Traditional methods, such as the network simplex algorithm,
can be computationally prohibitive for large-scale problems due to their
super-cubic time complexity.

19.0.1 Sinkhorn Distances and Entropic Regularization

To address these computational challenges, entropic regularization tech-
niques have been introduced. By adding an entropy term to the OT problem,
the objective function becomes strictly convex, facilitating more efficient op-
timization. This approach leads to the formulation of Sinkhorn distances,
which can be computed using the Sinkhorn-Knopp algorithm. This itera-
tive method alternates between normalizing the rows and columns of the
transport matrix, converging to an approximate solution of the regularized
OT problem. The computational complexity of the Sinkhorn algorithm is
significantly lower than that of traditional methods, making it more suitable
for large-scale applications.

19.0.2 Bregman Projections

Bregman projections offer another approach to solving regularized OT prob-
lems. These methods iteratively project onto the set of coupling matrices
that satisfy the marginal constraints, effectively handling the entropic regu-
larization term. The iterative Bregman projection algorithm has been shown
to converge to the optimal solution efficiently, providing a practical alterna-
tive to the Sinkhorn algorithm.

19.0.3 Accelerated Gradient Descent Methods

Recent advancements have explored the use of accelerated gradient descent
methods to further improve the efficiency of solving OT problems. By ap-
proximating the Kantorovich dual potential using smooth functions, these
methods can leverage fast proximal gradient algorithms to achieve precise
estimates of the OT cost with reduced computational complexity.
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20 Risks to privacy
Monitoring police behavior using sensor equipment to collect Big Data in-
troduces several ethical considerations that must be carefully addressed:

The deployment of sensor technologies, such as body cameras and facial
recognition systems, can infringe upon the privacy rights of both officers and
the public. Continuous surveillance may lead to a "chilling effect," where
individuals alter their behavior due to the perception of being constantly
watched, potentially impacting civil liberties (Brayne, 2017).

Machine Learning and big data analytics in policing can perpetuate ex-
isting biases if the underlying data reflects historical inequalities. For in-
stance, predictive policing algorithms may disproportionately target marginal-
ized communities, leading to over-policing and reinforcing systemic discrim-
ination (Selbst, 2018).

The use of complex algorithms and data-driven tools necessitates trans-
parency to ensure accountability. However, many of these systems operate
as "black boxes," making it difficult for the public and oversight bodies to
understand and scrutinize their decision-making processes (Ferguson, 2017).

The collection of data through sensor equipment often occurs without
explicit consent from those being monitored. This raises concerns about
individual autonomy and the right to control one’s personal information
(Brayne, 2017).

There is often a lack of comprehensive legal frameworks governing the
use of Big Data technologies in policing. This absence can lead to ethical
dilemmas and potential abuses of power, highlighting the need for clear
policies and regulations (Ferguson, 2017).

The accumulation of large datasets on individuals poses significant se-
curity risks. Unauthorized access or misuse of this data can have severe
consequences, including wrongful arrests or the exposure of sensitive per-
sonal information (Selbst, 2018).

Addressing these ethical considerations requires implementing robust
policies that promote transparency, ensure accountability, protect privacy,
and prevent discrimination. Engaging with community stakeholders and es-
tablishing independent oversight mechanisms are also crucial steps in the
ethical deployment of sensor technologies in policing.
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21 Conclusion
The optimal transport framework offers powerful geometric insights into the
structure of probability distributions. Through Monges and Kantorovichs
formulations, convex optimization, and the Brenier map, OT connects nat-
urally with information geometry. The Wasserstein distance, as a Rieman-
nian metric on probability spaces, enables more principled and efficient al-
gorithms in reinforcement learning and beyond.
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